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We study the angular Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state, in which the rotation symmetry is
spontaneously broken, in population imbalanced fermion gases near the BCS-BEC crossover. We investigate
the superfluid gases at low temperatures on the basis of the Bogoliubov–de Gennes equation and examine the
stability against thermal fluctuations using the T-matrix approach beyond the local-density approximation. We
find that the angular FFLO state is stabilized in the gases confined in the toroidal trap but not in the harmonic
trap. The angular FFLO state is stable near the BCS-BEC crossover owing to the formation of pseudogap.
Spatial dependences of number density and local population imbalance are shown for an experimental test.
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Superfluidity in cold fermion gases provides vast oppor-
tunities to study novel quantum phenomena.1 One of the
goals of current studies is the realization of the Fulde-Ferrell-
Larkin-Ovchinnikov �FFLO� state2,3 in population imbal-
anced superfluid gases.4,5 FFLO superfluidity/
superconductivity is attracting growing interest in a variety
of fields, such as condensed-matter physics,6 astrophysics,
and nuclear physics.7 Since many parameters can be experi-
mentally controlled,1 cold fermion gases are promising can-
didates for the FFLO state.8,9

Spontaneous breaking of space symmetry is a character-
istic feature of the FFLO state. However, no firm evidence
has been obtained for the space symmetry breaking in the
condensed-matter physics. In contrast to the superconduct-
ors, the spatial structure of superfluid is directly measured in
cold atom gases. Therefore, it is highly desired to observe the
space symmetry breaking due to the FFLO superfluidity in
cold fermion gases. While the translation symmetry plays a
major role in superconductors, cold atom gases lack transla-
tion symmetry owing to the trap potential. Instead, the rota-
tion symmetry is well defined in the latter. The purpose of
this Rapid Communication is to investigate the FFLO state
which spontaneously breaks the rotation symmetry.

On the basis of the mean-field Bogoliubov–de Gennes
�BdG� equations, some authors investigated the radial FFLO
�R-FFLO� state10–14 in which the order parameter changes its
sign along the radial direction around the edge of the har-
monic trap. However, no space symmetry is broken in the
R-FFLO state, and therefore it is difficult to distinguish it
from the phase separated state.15–17 In this Rapid Communi-
cation we show that the angular FFLO �A-FFLO� state with
broken rotation symmetry is stabilized in the toroidal trap.18

Several experiments are proposed for an unambiguous evi-
dence for the A-FFLO state.

The superfluidity has been realized in the imbalanced fer-
mion gases near the BCS-BEC crossover.4,5,19–21 However,
that is not achieved in the BCS limit since the transition
temperature Tc is too small. Because the mean-field theory
breaks down near the BCS-BEC crossover,1,22 a theoretical
treatment beyond the BdG equations is desired for the study
of cold fermion gases. To this end, the local-density approxi-
mation �LDA� has been used in the literature.8,15–17 However,
a theory beyond the LDA is needed to study the superfluid
phase with broken space symmetry. For these theoretical re-

quirements we adopt the real-space self-consistent T-matrix
approximation �RSTA�.23,24 The reliability of the RSTA has
been examined in the uniform system by comparing it with
the nonperturbative infinite-loop order theory.25 We found
that the RSTA is quantitatively valid at least in the BCS side
of BCS-BEC crossover.

We here investigate the gases confined in the �quasi-�two-
dimensional space. The two-dimensional gas is produced in
the pancake potential �z��� with �z and �� being the
harmonic trap frequency along the axial and radial direc-
tions, respectively. The one-dimensional optical lattice along
the axial direction also produces the quasi-two-dimensional
gas.26 Since the fluctuation completely suppresses the con-
tinuous symmetry breaking in one- and two-dimensional sys-
tems at finite temperatures, a weak three dimensionality is
assumed to realize the state with broken space symmetry.
The following calculation is carried out in the two-
dimensional model for simplicity, and the singularity of the
low-dimensional model is cut off by a phenomenological
procedure.

We adopt the lattice Hamiltonian given as

H = − t �
�r�,r�� �,�

cr�,�
† cr�� ,� + �

r��

�V��r� − r�0�� − ���nr�,�

+ U�
r�

nr�,1nr�,2, �1�

where �=1,2 denote two hyperfine states, r�0 is the center of
the trap, and nr�,�=cr�,�

† cr�,� is the number operator of � par-

ticles. We take the unit �=c=1. The symbol �r� ,r�� � denotes
the summation over nearest-neighbor sites. The chemical po-
tential �� for � particles is determined so that the number of
each particle is N�. The particle number and the imbalance
are expressed as N=N1+N2 and P= �N1−N2� / �N1+N2�, re-
spectively. The lattice model is adopted for simplicity, but
the discreteness of the lattice is negligible since we assume a
small particle density N /NL=0.1, where NL=L�L is the
number of lattice sites. Therefore, the following results are
valid for continuous systems without lattices in the two-
dimensional space. Since NL=38�38 in our calculation, the
particle number is N	144. We take the unit of length d so
that 1 /2md2= t=1, where m is the mass of atoms. We define
the Fermi energy as �F=�−�0, where �0 is the energy of the
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lowest eigenstate and � is the chemical potential at P=0 and
U=0. We find that the superfluidity is the leading instability
and no spin/charge-density wave occurs in this model.

The last term of Eq. �1� describes the s-wave attractive
interaction. We assume U / t=−5, which leads to
U /�F=−3.1. The BCS-BEC crossover is characterized in the
two-dimensional system through the two-particle binding en-
ergy eb rather than the three-dimensional scattering length
as.

27 In the uniform system, the binding energy is related
with the chemical-potential shift as 	�=�−�0=−

eb

2 , where
�0 is the chemical potential shifted by the Hartree term. The
order parameter is described as 	0=
2eb�F. Our calculations
of 	� and 	0 consistently lead to eb	0.43�F for U / t=−5.
Since the BCS-BEC crossover occurs around eb	�F, our
model is close to the BCS-BEC crossover slightly in the
BCS side. The binding energy eb and effective interaction U
are related with the three-dimensional scattering length as
through the confinement length az=1 /
m�z.

28

The trap potential is assumed to be V�r�
= 1

2�ho�r /r0�2+�tr exp�−r /
�. This potential describes the
harmonic trap for �tr=0 and the toroidal trap for �tr�0. We
found that the A-FFLO state is unstable in the harmonic trap
in the whole parameter range. Therefore, we here show the
results for the toroidally trapped system with �ho=12,
�tr=8, and 
=5. The A-FFLO state is stabilized for any
�tr /�ho�0, whose reason will be discussed later.

We first analyze the model within the mean-field BdG
equation and later investigate the role of thermal fluctuations
on the basis of the RSTA. We obtain the mean-field Hamil-
tonian of BdG equations as H=−t��r�,r�� �,�cr�,�

† cr�� ,�

+�r�,�W��r��nr�,� ,−�r��	�r��cr�,1
† cr�,2

† +c .c.�, where W��r��
=V��r�−r�0��+Un�̄�r��−��, �̄=3−�, n��r��= �nr�,��, and 	�r��
=U�cr�,1cr�,2�. The unphysical ultraviolet divergence in 	�r��
�Refs. 1 and 27� is naturally cut off since we adopt the lattice
model. We numerically determine the stable phase by com-
paring the free energy of self-consistent solutions for n��r��
and 	�r��.

The RSTA has been formulated for the inhomogeneous
superconductors.23,24 The Green’s function G��r� ,r�� ,�n� and
the T-matrix T�r� ,r�� � are obtained by the following self-
consistent equations:

G��r�,r�� ,�n� = G0
��r�,r�� ,�n� + �

r�2,r�3

G0
��r�,r�2,�n�

����r�2,r�3,�n�G��r�3,r�� ,�n� , �2�

���r�,r�� ,�n� = Un�̄�r��r�,r�� − TU2T�r�,r�� �G�̄�r�� ,r�,− �n� , �3�

T�r�,r�� � = T0�r�,r�� � − �
r�2

UT0�r�,r�2�T�r�2,r�� � , �4�

T0�r�,r�� � = T�
n

G1�r�,r�� ,�n�G2�r�,r�� ,− �n� , �5�

where G0
��r� ,r�� ,�n� is the Green’s function for U=0,

�n= �2n+1��T is the Matsubara frequency, and T is the tem-
perature. The thermal fluctuation, which is neglected in the
BdG equations, is taken into account in the self-energy

���r� ,r�� ,�n� in the one-loop order. The pseudogap in the
single-particle excitation as well as the shift in chemical po-
tential are taken into account in the RSTA. The former is
neglected in the often-used Nozieres and Schmitt-Rink
theory.29 We show that the pseudogap plays an essential role
for the stability of A-FFLO state.

The quantum fluctuation is ignored in the RSTA, and
therefore the RSTA is valid at finite temperature around Tc.

25

Therefore, the RSTA is used to determine the instability to
the superfluid state. The Tc is determined by the Thouless
criterion. The maximum eigenvalue of �U�T0�r� ,r�� �, namely,
�L, is unity at T=Tc. Since the true long-range order
does not occur in finite systems, we adopt the criterion
�L=1−L=0.98 for Tc below which the long-range coher-
ence develops. The singularity due to the one or two dimen-
sionalities is also cut off by this procedure. The following
results are not qualitatively altered by the choice of L. This
means that the following results are not sensitive to the three
dimensionality which is phenomenologically taken into ac-
count by a finite L. The density of states �DOS� for particles
� is obtained as �����=− 1

�NL
�r�Im G�R�r� ,r� ,��, where

G�R�r� ,r� ,�� is the retarded Green’s function. The total DOS
is expressed as ����=�1���+�2���.

We first discuss the results of BdG equations. Although
the quantitatively reliable result is not obtained near the
BCS-BEC crossover, the properties of each phase, such as
the local population imbalance, are captured by the BdG
equations. We here study the spatial structure of several su-
perfluid phases. Figure 1 shows the phase diagram in which
BCS state, R-FFLO state, and A-FFLO state are stabilized.
Since the BCS state smoothly changes to the R-FFLO state
without any phase transition, we show the crossover line
above which the superfluid order parameter changes its sign
around the trap edge. With an increase in the population
imbalance, the second-order phase transition occurs from the
R-FFLO state to the A-FFLO state. Although the transition
temperature is significantly overestimated in BdG equations,
the successive phase transitions from the BCS state to the
A-FFLO state are not altered by the fluctuations, as will be
shown on the basis of the RSTA.

We clarify the spatial structures of each phase in Figs.
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FIG. 1. �Color online� The phase diagram for the imbalance P
and the reduced temperature T /�F. Phase boundaries obtained by
the BdG equations are shown by circles, triangles, and diamonds.
The BCS state, R-FFLO state, and A-FFLO state are shown in the
figure. The phase diagram determined by the RSTA is shown by the
squares and �purple� thin solid line. The A-FFLO state is stable
above the thin solid line, while the R-FFLO or BCS state is stable
below it. We fix the particle density N /NL=0.1 in all figures.
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2–4. First we show the order parameter for various imbal-
ances in Fig. 2. Figure 2�a� shows the BCS state realized in
the balanced gas. Figures 2�b� and 2�c� show the R-FFLO
state in the imbalanced gases. The rotation symmetry is pre-
served in these states. As the imbalance is increased in these
states, the width of superfluid region shrinks. This deforma-
tion is regarded as the self-one-dimensionalization of the su-
perfluid along the angular direction and leads to the A-FFLO
state for P�0.43. Figures 2�d�–2�f� show the spontaneous
rotation symmetry breaking in the A-FFLO state. Thus, the
A-FFLO state is an analog of the �quasi-�one-dimensional
FFLO state.30–36 It is known that the FFLO state is favored in
the quasi-one-dimensional system because of the nesting of
Fermi surface.6 An important finding of this Rapid Commu-
nication is the spontaneous formation of quasi-one-
dimensional superfluid in the toroidal trap without any fine
tuning. This should be contrasted to the harmonic trap in
which the uniform one-dimensional superfluid is hardly pro-
duced. We found that the self-one-dimensionalization occurs
and the A-FFLO state is stabilized for any value of �tr /�ho

�0. As the particle density decreases, the quasi-one-
dimensional structure is enhanced, and therefore the A-FFLO
state is favored. A similar spatial structure has been dis-
cussed within the purely one-dimensional model; however,
the self-one-dimensionalization has not been noticed.36 Al-
though we investigate the gases in the �quasi-�two-
dimensional trap for simplicity, the A-FFLO state will be
stabilized by the self-one-dimensionalization in a more gen-
eral three-dimensional trap too.

Figure 3 shows the spatial dependence of local population
imbalance n1�r��−n2�r��. While the population imbalance ap-
pears around the outer and/or inner edges in the R-FFLO
state �Figs. 3�a�–3�c��, the spontaneous rotation symmetry
breaking is clearly shown in the A-FFLO state �Figs.
3�d�–3�f��. A clear fourfold anisotropy is shown in Fig. 3�d�,
while the spatial dependence is smeared with an increase in
the imbalance, as shown in Fig. 3�f�. Thus, the features of the
A-FFLO state are pronounced near the phase boundary to the
R-FFLO state. A characteristic feature of A-FFLO state also
appears in the particle density n1�r��+n2�r�� as shown in Figs.
4�d�–4�f�. The particle density decreases around the spatial
nodes to gain the condensation energy. Owing to the sponta-
neous symmetry breaking, many A-FFLO states with differ-
ent nodal directions are essentially degenerate. This degen-
eracy is slightly lifted by the lattice in our calculation. We
show the most stable states in Figs. 2–4.

We here turn to the results of RSTA and discuss the roles
of the thermal fluctuation. The phase diagram is shown in
Fig. 1 and is compared to the mean-field BdG equations.
According to the RSTA, the phase transition to the A-FFLO
state occurs above P=0.35, although the Tc is decreased by
the fluctuation. This means that the A-FFLO state is stable
against the fluctuation, in contrast to the previous studies.37,38

We see the stability of the A-FFLO state because the phase
diagram is plotted for the imbalance P but not for the “mag-
netic field” �1−�2. The A-FFLO state seems to be sup-
pressed by the fluctuation when the phase diagram is plotted
for the “magnetic field” as in the studies of superconductors.6

The relation between the “magnetic field” �1−�2 and the
imbalance P is affected by the pseudogap. In Fig. 5 we see
the decrease in DOS around �=0, namely, the pseudogap.

(a) P=0 (b) P=0.21 (c) P=0.39

-0.4 0 0.4 0.8 1.2 1.6 -0.4 0 0.4 0.8 1.2 1.6 -0.4 0 0.4 0.8 1.2 1.6

(d) P=0.44 (e) P=0.49 (f) P=0.69
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FIG. 2. �Color online� Spatial dependence of superfluid order
parameter 	�r�� at T /�F=0.00062. �a� P=0, �b� 0.21, �c� 0.39, �d�
0.44, �e� 0.49, and �f� 0.69, respectively.

(a) P=0.1 (b) P=0.21 (c) P=0.39

(d) P=0.44 (e) P=0.49 (f) P=0.69
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FIG. 3. �Color online� Spatial dependence of local population
imbalance n1�r��−n2�r��. We assume P=0.1 in �a�. The other param-
eters are the same as in Fig. 2.

(a) P=0 (b) P=0.21 (c) P=0.39

(d) P=0.44 (e) P=0.49 (f) P=0.69
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FIG. 4. �Color online� Spatial dependence of particle density
n1�r��+n2�r��. The parameters are the same as in Fig. 2.
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The “magnetic field” for a fixed imbalance is increased by
the pseudogap since the “spin susceptibility” �= P / ��1
−�2� decreases. The large “magnetic field” leads to the large
splitting of Fermi surfaces for particles 1 and 2 and stabilizes
the A-FFLO state. In other words, the A-FFLO state is stable
near the BCS-BEC crossover in cold fermion gases since the
spin-diffusion time is long enough to conserve the imbal-
ance. This should be contrasted to the superconductors in
which the magnetization is not conserved.

We here comment on the superfluid state in the BCS and
BEC regimes. In the BCS regime the phase diagram obtained
by the BdG equation �Fig. 1� is reliable although the Tc and
Chandrasekhar-Clogston limit are decreased. On the other
hand, the imbalanced gas in the BEC limit is described by
the mixture of molecular bosons and remaining fermions,
and then the FFLO state is not stabilized.

In this Rapid Communication we focused on the super-
fluid with broken rotation symmetry. Such a spontaneous
symmetry breaking is not allowed in the purely one- or two-
dimensional systems37,38 but is expected to be realized in the
weakly three-dimensional system. On the other hand, it is

also interesting to investigate the gases in the two-
dimensional toroidal trap. Then, the rotation symmetry
breaking is suppressed by the gapless collective mode in the
isotropic trap but is produced in the anisotropic trap with
�x��y. Such a giant response to the trap anisotropy may
manifest the tendency to the rotation symmetry breaking as
well as the singularity of low-dimensional systems.

In summary, we found that the A-FFLO state is stabilized
in the population imbalanced fermion gases confined in the
toroidal trap. The formation of the R-FFLO state leads to the
self-one-dimensionalization of the superfluid and stabilizes
the A-FFLO state in the highly imbalanced gases. Then, the
rotation symmetry is spontaneously broken. The search for
the FFLO state in cold fermion gases has been fruitless prob-
ably because the experiments were carried out for the har-
monically trapped gases. It is difficult to detect the FFLO
state in the harmonic trap since no space symmetry breaking
occurs. We suggest that the experiment in the toroidal trap
will realize the FFLO state with broken rotation symmetry
and will obtain the unambiguous evidence for the FFLO state
which has been searched for more than 40 years after the
theoretical predictions.2,3

Recently we have become aware of the paper by Chen et
al. in which a superfluid state similar to the A-FFLO state
was investigated in the optical lattice.39 However, the rota-
tion symmetry is not well defined in the optical lattice. The
superfluidity near the BCS-BEC crossover has not been in-
vestigated.
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FIG. 5. �Color online� �a� Total DOS ���� in the balanced gas
�P=0� at T /�F=0.074. �b� Spin-resolved DOS ����� in the imbal-
anced gas �P=0.4� at T /�F=0.028. Solid and dashed lines show the
DOS for �=1 and 2, respectively. Thick lines show the results of
RSTA, while thin lines are obtained by the mean-field theory for the
normal fluid with 	�r��=0.
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